2025/08/23 14:30 1/2 Bash process substitution

bash, processsubstitution
Bash process substitution

e https://medium.com/@joewalnes/handy-bash-feature-process-substitution-8eb6dce68133
Handy Bash feature: Process Substitution

Pretty much everything useful | ever learned about UNIX shells was not from reading books or manuals, but by peering over someone’s
shoulder and seeing something I'd never seen before. “Ooooh, what was that you just did?”

It was a few years ago | was working with my friend Jordan Samuels, when we wanted to compare two versions of a file at a particular URL. |
knew what to do...

curl http://somesite/filel > filel
curl http://somesite/file2 > file2
diff filel file2

Simple right? Download filel, download file2, and diff them. 3 steps.

But before | could type it, Jordan grabbed the keyboard and typed some crazy voodoo I'd never seen before...

diff <(curl http://somesite/filel) <(curl http://somesite/file2)

Ooooh, what was that weird syntax? And why did it appear to run twice as fast as what | was expecting?

Process substitution!

Process substitution gives you similar capabilities to piping. Except piping only allows you to pipe the output from a single command into
another. In the diff scenario, we need to pipe the output from multiple commands into another. And that's what process substitution allows
us to do.

The syntax for using process substitution is this:

some-command <(another-command)

Where some-command accepts a filename (or multiple filenames) as arguments, and another-command writes output to stdout.

Wait a minute... how does that work? There are no filenames anywhere? Well, behind the scenes, when Bash sees the process substitution
<(...), it'll create a temporary file descriptor which it uses as the filename and pipe output from the other process into it.

When to use process substitution

If a regular old pipe will do, just do that. But there are a few scenarios when pipes won't cut it...

e |f you need to feed multiple outputs into a single program (like the diff example above)
e |f you need to feed output from a program into a program that expects input files, but cannot read from stdin
e |f you find yourself using temporary files

Parallelization!

Apart from simplicity, another advantage of using process substitution is Bash will automatically parallelize your tasks. Returning to our
first example...

diff <(curl http://somesite/filel) <(curl http://somesite/file2)

nanoscopic wiki - https://wiki.nanoscopic.de/

https://wiki.nanoscopic.de/doku.php/tag/bash?do=showtag&tag=bash
https://wiki.nanoscopic.de/doku.php/tag/processsubstitution?do=showtag&tag=processsubstitution
https://medium.com/@joewalnes/handy-bash-feature-process-substitution-8eb6dce68133

Last
update:
2021/02/11
13:37

pages:howtos:bash:bash-process-substitution https://wiki.nanoscopic.de/doku.php/pages/howtos/bash/bash-process-substitution?rev=1613050641

... Bash will run both those curl commands in parallel. Sweet huh?

Ok, that's it. Have a nice day.
Diving deeper

If you want to get into the nitty gritty details about how this stuff works, here’s some more reading.

e http://tldp.org/LDP/abs/html/process-sub.html
e http://en.wikipedia.org/wiki/Process_substitution
e http://en.wikipedia.org/wiki/Named_pipe

From:
https://wiki.nanoscopic.de/ - nanoscopic wiki

Permanent link:
https://wiki.nanoscopic.de/doku.php/pages/howtos/bash/bash-process-substitution?rev=1613050641

Last update: 2021/02/11 13:37

https://wiki.nanoscopic.de/ Printed on 2025/08/23 14:30

http://tldp.org/LDP/abs/html/process-sub.html
http://en.wikipedia.org/wiki/Process_substitution
http://en.wikipedia.org/wiki/Named_pipe
https://wiki.nanoscopic.de/
https://wiki.nanoscopic.de/doku.php/pages/howtos/bash/bash-process-substitution?rev=1613050641

	Bash process substitution
	Handy Bash feature: Process Substitution
	Process substitution!
	When to use process substitution
	Parallelization!
	Diving deeper

